Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
J Cell Sci ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482739

RESUMO

CSL (CBF1/RBP-Jκ/Suppressor of Hairless/LAG-1) proteins are conserved transcription factors found in animals and fungi. In fission yeast, they regulate various cellular processes, including cell cycle progression, lipid metabolism, and cell adhesion. CSL proteins bind to DNA through their N-terminal Rel-like domain and central beta-trefoil domain. Here, we investigated the importance of DNA binding for CSL functions in the fission yeast Schizosaccharomyces pombe. We created CSL mutants with disrupted DNA binding and found that the vast majority of CSL functions depend on intact DNA binding. Specifically, DNA binding is crucial for the regulation of cell adhesion, lipid metabolism, cell cycle progression, long non-coding RNA expression, and genome integrity maintenance. Interestingly, perturbed lipid metabolism leads to chromatin structure changes, potentially linking lipid metabolism to the diverse CSL-associated phenotypes. Our study highlights the critical role of DNA binding for CSL protein functions in fission yeast.

3.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38415071

RESUMO

Schizosaccharomyces pombe Clp1 is a Cdc14-family phosphatase that reverses mitotic Cdk1 phosphorylation. Despite evolutionary conservation, Clp1 's mammalian orthologs do not share this function. Rather, higher eukaryotic Cdc14 enzymes act in DNA repair, ciliogenesis, and gene regulation. To examine if Clp1 regulates gene expression, we compared the transcriptional profiles of cells lacking Clp1 function to that of wildtype. Because clp1∆ cells are sensitive to the actin depolymerizing drug, LatrunculinA, we also investigated whether a transcriptional response was involved. Our results indicate that Clp1 does not detectably affect gene expression and highlight the organism-specific functions of this conserved phosphatase family.

4.
PLoS One ; 19(2): e0299200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359013

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0137820.].

5.
Elife ; 122023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787768

RESUMO

Many proteins remain poorly characterized even in well-studied organisms, presenting a bottleneck for research. We applied phenomics and machine-learning approaches with Schizosaccharomyces pombe for broad cues on protein functions. We assayed colony-growth phenotypes to measure the fitness of deletion mutants for 3509 non-essential genes in 131 conditions with different nutrients, drugs, and stresses. These analyses exposed phenotypes for 3492 mutants, including 124 mutants of 'priority unstudied' proteins conserved in humans, providing varied functional clues. For example, over 900 proteins were newly implicated in the resistance to oxidative stress. Phenotype-correlation networks suggested roles for poorly characterized proteins through 'guilt by association' with known proteins. For complementary functional insights, we predicted Gene Ontology (GO) terms using machine learning methods exploiting protein-network and protein-homology data (NET-FF). We obtained 56,594 high-scoring GO predictions, of which 22,060 also featured high information content. Our phenotype-correlation data and NET-FF predictions showed a strong concordance with existing PomBase GO annotations and protein networks, with integrated analyses revealing 1675 novel GO predictions for 783 genes, including 47 predictions for 23 priority unstudied proteins. Experimental validation identified new proteins involved in cellular aging, showing that these predictions and phenomics data provide a rich resource to uncover new protein functions.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Fenômica , Proteínas de Schizosaccharomyces pombe/genética , Fenótipo , Schizosaccharomyces/genética , Aprendizado de Máquina
6.
Genetics ; 225(3)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758508

RESUMO

Standardized nomenclature for genes, gene products, and isoforms is crucial to prevent ambiguity and enable clear communication of scientific data, facilitating efficient biocuration and data sharing. Standardized genotype nomenclature, which describes alleles present in a specific strain that differ from those in the wild-type reference strain, is equally essential to maximize research impact and ensure that results linking genotypes to phenotypes are Findable, Accessible, Interoperable, and Reusable (FAIR). In this publication, we extend the fission yeast clade gene nomenclature guidelines to support the curation efforts at PomBase (www.pombase.org), the Schizosaccharomyces pombe Model Organism Database. This update introduces nomenclature guidelines for noncoding RNA genes, following those set forth by the Human Genome Organisation Gene Nomenclature Committee. Additionally, we provide a significant update to the allele and genotype nomenclature guidelines originally published in 1987, to standardize the diverse range of genetic modifications enabled by the fission yeast genetic toolbox. These updated guidelines reflect a community consensus between numerous fission yeast researchers. Adoption of these rules will improve consistency in gene and genotype nomenclature, and facilitate machine-readability and automated entity recognition of fission yeast genes and alleles in publications or datasets. In conclusion, our updated guidelines provide a valuable resource for the fission yeast research community, promoting consistency, clarity, and FAIRness in genetic data sharing and interpretation.


Assuntos
Schizosaccharomyces , Humanos , Schizosaccharomyces/genética , Alelos , Compreensão , Bases de Dados Genéticas , Fenótipo
7.
Cell Cycle ; 22(17): 1921-1936, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37635373

RESUMO

Quiescence (G0) is a reversible non-dividing state that facilitates cellular survival in adverse conditions. Here, we demonstrate that the HIRA histone chaperone complex is required for the reversibility and longevity of nitrogen starvation-induced quiescence in Schizosaccharomyces pombe. The HIRA protein, Hip1 is not required for entry into G0 or the induction of autophagy. Although hip1Δ cells retain metabolic activity in G0, they rapidly lose the ability to resume proliferation. After a short period in G0 (1 day), hip1Δ mutants can resume cell growth in response to the restoration of a nitrogen source but do not efficiently reenter the vegetative cell cycle. This correlates with a failure to induce the expression of MBF transcription factor-dependent genes that are critical for S phase. In addition, hip1Δ G0 cells rapidly progress to a senescent state in which they can no longer re-initiate growth following nitrogen source restoration. Analysis of a conditional hip1 allele is consistent with these findings and indicates that HIRA is required for efficient exit from quiescence and prevents an irreversible cell cycle arrest.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Chaperonas de Histonas/genética , Divisão Celular , Proteínas de Ciclo Celular/metabolismo , Nitrogênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Mol Syst Biol ; 19(8): e11493, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37485750

RESUMO

The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states. Integrating multi-omics profiling of genetically heterogeneous budding and fission yeast strains with an array of cellular traits identified a central state transition of the yeast molecular network that is related to PKA and TOR (PT) signaling. Genetic variants affecting this PT state globally shifted the molecular network along a single-dimensional axis, thereby modulating processes including energy and amino acid metabolism, transcription, translation, cell cycle control, and cellular stress response. We propose that genetic effects can propagate through large parts of molecular networks because of the functional requirement to centrally coordinate the activity of fundamental cellular processes.


Assuntos
Herança Multifatorial , Proteínas de Saccharomyces cerevisiae , Transdução de Sinais/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fenótipo
9.
Nat Commun ; 14(1): 4381, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474586

RESUMO

In post-reproductive C. elegans, destructive somatic biomass repurposing supports production of yolk which, it was recently shown, is vented and can serve as a foodstuff for larval progeny. This is reminiscent of the suicidal reproductive effort (reproductive death) typical of semelparous organisms such as Pacific salmon. To explore the possibility that C. elegans exhibits reproductive death, we have compared sibling species pairs of the genera Caenorhabditis and Pristionchus with hermaphrodites and females. We report that yolk venting and constitutive, early pathology involving major anatomical changes occur only in hermaphrodites, which are also shorter lived. Moreover, only in hermaphrodites does germline removal suppress senescent pathology and markedly increase lifespan. This is consistent with the hypothesis that C. elegans exhibit reproductive death that is suppressed by germline ablation. If correct, this would imply a major difference in the ageing process between C. elegans and most higher organisms, and potentially explain the exceptional plasticity in C. elegans ageing.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Humanos , Animais , Feminino , Envelhecimento , Longevidade , Reprodução
10.
Curr Biol ; 33(11): 2175-2186.e5, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164017

RESUMO

Most eukaryotes respire oxygen, using it to generate biomass and energy. However, a few organisms have lost the capacity to respire. Understanding how they manage biomass and energy production may illuminate the critical points at which respiration feeds into central carbon metabolism and explain possible routes to its optimization. Here, we use two related fission yeasts, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, as a comparative model system. We show that although S. japonicus does not respire oxygen, unlike S. pombe, it is capable of efficient NADH oxidation, amino acid synthesis, and ATP generation. We probe possible optimization strategies through the use of stable isotope tracing metabolomics, mass isotopologue distribution analysis, genetics, and physiological experiments. S. japonicus appears to have optimized cytosolic NADH oxidation via glycerol-3-phosphate synthesis. It runs a fully bifurcated TCA pathway, sustaining amino acid production. Finally, we propose that it has optimized glycolysis to maintain high ATP/ADP ratio, in part by using the pentose phosphate pathway as a glycolytic shunt, reducing allosteric inhibition of glycolysis and supporting biomass generation. By comparing two related organisms with vastly different metabolic strategies, our work highlights the versatility and plasticity of central carbon metabolism in eukaryotes, illuminating critical adaptations supporting the preferential use of glycolysis over oxidative phosphorylation.


Assuntos
Carbono , Eucariotos , Carbono/metabolismo , Eucariotos/metabolismo , NAD/metabolismo , Metabolismo Energético , Glicólise , Aminoácidos/metabolismo , Trifosfato de Adenosina/metabolismo , Oxigênio
11.
PLoS One ; 18(5): e0285576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37220133

RESUMO

Messenger RNA uridylation is pervasive and conserved among eukaryotes, but the consequences of this modification for mRNA fate are still under debate. Utilising a simple model organism to study uridylation may facilitate efforts to understand the cellular function of this process. Here we demonstrate that uridylation can be detected using simple bioinformatics approach. We utilise it to unravel widespread transcript uridylation in fission yeast and demonstrate the contribution of both Cid1 and Cid16, the only two annotated terminal uridyltransferases (TUT-ases) in this yeast. To detect uridylation in transcriptome data, we used a RNA-sequencing (RNA-seq) library preparation protocol involving initial linker ligation to fragmented RNA-an approach borrowed from small RNA sequencing that was commonly used in older RNA-seq protocols. We next explored the data to detect uridylation marks. Our analysis show that uridylation in yeast is pervasive, similarly to the one in multicellular organisms. Importantly, our results confirm the role of the cytoplasmic uridyltransferase Cid1 as the primary uridylation catalyst. However, we also observed an auxiliary role of the second uridyltransferase, Cid16. Thus both fission yeast uridyltransferases are involved in mRNA uridylation. Intriguingly, we found no physiological phenotype of the single and double deletion mutants of cid1 and cid16 and only minimal impact of uridylation on steady-state mRNA levels. Our work establishes fission yeast as a potent model to study uridylation in a simple eukaryote, and we demonstrate that it is possible to detect uridylation marks in RNA-seq data without the need for specific methodologies.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , RNA Mensageiro , Saccharomyces cerevisiae , RNA , Catálise , UDPglucose-Hexose-1-Fosfato Uridiltransferase , Nucleotidiltransferases
12.
Nat Microbiol ; 8(3): 441-454, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797484

RESUMO

Genetically identical cells are known to differ in many physiological parameters such as growth rate and drug tolerance. Metabolic specialization is believed to be a cause of such phenotypic heterogeneity, but detection of metabolically divergent subpopulations remains technically challenging. We developed a proteomics-based technology, termed differential isotope labelling by amino acids (DILAC), that can detect producer and consumer subpopulations of a particular amino acid within an isogenic cell population by monitoring peptides with multiple occurrences of the amino acid. We reveal that young, morphologically undifferentiated yeast colonies contain subpopulations of lysine producers and consumers that emerge due to nutrient gradients. Deconvoluting their proteomes using DILAC, we find evidence for in situ cross-feeding where rapidly growing cells ferment and provide the more slowly growing, respiring cells with ethanol. Finally, by combining DILAC with fluorescence-activated cell sorting, we show that the metabolic subpopulations diverge phenotypically, as exemplified by a different tolerance to the antifungal drug amphotericin B. Overall, DILAC captures previously unnoticed metabolic heterogeneity and provides experimental evidence for the role of metabolic specialization and cross-feeding interactions as a source of phenotypic heterogeneity in isogenic cell populations.


Assuntos
Aminoácidos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Marcação por Isótopo
13.
PLoS Genet ; 19(1): e1010582, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36626368

RESUMO

Oxidative stress is associated with cardiovascular and neurodegenerative diseases, diabetes, cancer, psychiatric disorders and aging. In order to counteract, eliminate and/or adapt to the sources of stress, cells possess elaborate stress-response mechanisms, which also operate at the level of regulating transcription. Interestingly, it is becoming apparent that the metabolic state of the cell and certain metabolites can directly control the epigenetic information and gene expression. In the fission yeast Schizosaccharomyces pombe, the conserved Sty1 stress-activated protein kinase cascade is the main pathway responding to most types of stresses, and regulates the transcription of hundreds of genes via the Atf1 transcription factor. Here we report that fission yeast cells defective in fatty acid synthesis (cbf11, mga2 and ACC/cut6 mutants; FAS inhibition) show increased expression of a subset of stress-response genes. This altered gene expression depends on Sty1-Atf1, the Pap1 transcription factor, and the Gcn5 and Mst1 histone acetyltransferases, is associated with increased acetylation of histone H3 at lysine 9 in the corresponding gene promoters, and results in increased cellular resistance to oxidative stress. We propose that changes in lipid metabolism can regulate the chromatin and transcription of specific stress-response genes, which in turn might help cells to maintain redox homeostasis.


Assuntos
Cromatina , Metabolismo dos Lipídeos , Estresse Oxidativo , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Acetiltransferases/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Cromatina/metabolismo , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/genética
14.
Methods Mol Biol ; 2477: 381-397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35524128

RESUMO

Colony fitness screens are powerful approaches for functional genomics and genetics. This protocol describes experimental and computational procedures for assaying the fitness of thousands of microbial strains in numerous conditions in parallel. Data analysis is based on pyphe, an all-in-one bioinformatics toolbox for scanning, image analysis, data normalization, and interpretation. We describe a standard protocol where endpoint colony areas are used as fitness proxy and two variations on this, one using colony growth curves and one using colony viability staining with phloxine B. Different strategies for experimental design, normalization and quality control are discussed. Using these approaches, it is possible to collect hundreds of thousands of data points, with low technical noise levels around 5%, in an experiment typically lasting 2 weeks or less.


Assuntos
Genômica , Processamento de Imagem Assistida por Computador , Genômica/métodos , Processamento de Imagem Assistida por Computador/métodos , Fenótipo
15.
Elife ; 112022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34984977

RESUMO

Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it is not clear in general to what extent lincRNAs contribute to the information flow from genotype to phenotype. To explore this question, we systematically analysed cellular roles of lincRNAs in Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse coding-gene mutants for functional context. We applied high-throughput colony-based assays to determine mutant growth and viability in benign conditions and in response to 145 different nutrient, drug, and stress conditions. These analyses uncovered phenotypes for 47.5% of the lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed high-throughput microscopy and flow cytometry assays, linking 37% of these lincRNAs with cell-size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%) of all lincRNA deletion mutants tested. For complementary functional inference, we analysed colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain conditions. Clustering analyses provided further functional clues and relationships for some of the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of phenotypes, indicating that most of the lincRNAs analysed exert cellular functions in specific environmental or physiological contexts. This study provides groundwork to further dissect the roles of these lincRNAs in the relevant conditions.


Assuntos
RNA Fúngico/genética , RNA não Traduzido/genética , Schizosaccharomyces/genética , RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Schizosaccharomyces/metabolismo
16.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100366

RESUMO

PomBase (www.pombase.org), the model organism database (MOD) for the fission yeast Schizosaccharomyces pombe, supports research within and beyond the S. pombe community by integrating and presenting genetic, molecular, and cell biological knowledge into intuitive displays and comprehensive data collections. With new content, novel query capabilities, and biologist-friendly data summaries and visualization, PomBase also drives innovation in the MOD community.


Assuntos
Schizosaccharomyces , Biologia , Bases de Dados Factuais , Schizosaccharomyces/genética
18.
Nat Commun ; 12(1): 5801, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611154

RESUMO

The nematode Caenorhabditis elegans exhibits rapid senescence that is promoted by the insulin/IGF-1 signalling (IIS) pathway via regulated processes that are poorly understood. IIS also promotes production of yolk for egg provisioning, which in post-reproductive animals continues in an apparently futile fashion, supported by destructive repurposing of intestinal biomass that contributes to senescence. Here we show that post-reproductive mothers vent yolk which can be consumed by larvae and promotes their growth. This implies that later yolk production is not futile; instead vented yolk functions similarly to milk. Moreover, yolk venting is promoted by IIS. These findings suggest that a self-destructive, lactation-like process effects resource transfer from postreproductive C. elegans mothers to offspring, in a fashion reminiscent of semelparous organisms that reproduce in a single, suicidal burst. That this process is promoted by IIS provides insights into how and why IIS shortens lifespan in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Animais , Biomassa , Feminino , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
19.
PLoS Genet ; 17(8): e1009784, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34464389

RESUMO

Aberrant repair of DNA double-strand breaks can recombine distant chromosomal breakpoints. Chromosomal rearrangements compromise genome function and are a hallmark of ageing. Rearrangements are challenging to detect in non-dividing cell populations, because they reflect individually rare, heterogeneous events. The genomic distribution of de novo rearrangements in non-dividing cells, and their dynamics during ageing, remain therefore poorly characterized. Studies of genomic instability during ageing have focussed on mitochondrial DNA, small genetic variants, or proliferating cells. To characterize genome rearrangements during cellular ageing in non-dividing cells, we interrogated a single diagnostic measure, DNA breakpoint junctions, using Schizosaccharomyces pombe as a model system. Aberrant DNA junctions that accumulated with age were associated with microhomology sequences and R-loops. Global hotspots for age-associated breakpoint formation were evident near telomeric genes and linked to remote breakpoints elsewhere in the genome, including the mitochondrial chromosome. Formation of breakpoint junctions at global hotspots was inhibited by the Sir2 histone deacetylase and might be triggered by an age-dependent de-repression of chromatin silencing. An unexpected mechanism of genomic instability may cause more local hotspots: age-associated reduction in an RNA-binding protein triggering R-loops at target loci. This result suggests that biological processes other than transcription or replication can drive genome rearrangements. Notably, we detected similar signatures of genome rearrangements that accumulated in old brain cells of humans. These findings provide insights into the unique patterns and possible mechanisms of genome rearrangements in non-dividing cells, which can be promoted by ageing-related changes in gene-regulatory proteins.


Assuntos
Rearranjo Gênico/genética , Instabilidade Genômica/genética , Estruturas R-Loop/genética , Envelhecimento/genética , Aberrações Cromossômicas , Pontos de Quebra do Cromossomo , Quebras de DNA de Cadeia Dupla , Genômica/métodos , Modelos Genéticos , Mutação/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Telômero/genética
20.
Microb Cell ; 8(7): 146-160, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34250083

RESUMO

Ageing-related processes are largely conserved, with simple organisms remaining the main platform to discover and dissect new ageing-associated genes. Yeasts provide potent model systems to study cellular ageing owing their amenability to systematic functional assays under controlled conditions. Even with yeast cells, however, ageing assays can be laborious and resource-intensive. Here we present improved experimental and computational methods to study chronological lifespan in Schizosaccharomyces pombe. We decoded the barcodes for 3206 mutants of the latest gene-deletion library, enabling the parallel profiling of ~700 additional mutants compared to previous screens. We then applied a refined method of barcode sequencing (Bar-seq), addressing technical and statistical issues raised by persisting DNA in dead cells and sampling bottlenecks in aged cultures, to screen for mutants showing altered lifespan during stationary phase. This screen identified 341 long-lived mutants and 1246 short-lived mutants which point to many previously unknown ageing-associated genes, including 46 conserved but entirely uncharacterized genes. The ageing-associated genes showed coherent enrichments in processes also associated with human ageing, particularly with respect to ageing in non-proliferative brain cells. We also developed an automated colony-forming unit assay to facilitate medium- to high-throughput chronological-lifespan studies by saving time and resources compared to the traditional assay. Results from the Bar-seq screen showed good agreement with this new assay. This study provides an effective methodological platform and identifies many new ageing-associated genes as a framework for analysing cellular ageing in yeast and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...